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Abstract

In mathematical programming of the n-set functionss is considered a
framework where the Kuhn-Tucker conditions are equality relations. For
a multiobjective fractional program involving generalized (p ,b)-vex n-set

functions there is defined a multiobjective fractional pro-gram with
equality constrains and weak, direct and converse duality theorems are
established.
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1. INTRODUCTION

In 1979 Morris[9] devel oped the first optimization theory of the set functions. He
defined the convexity and differentiability notions for the set functions and established
optimal conditions and Lagrange duality for nonlinear programming problems with set
functions.. The Corley’s paper [2] is very important because he initiated the study of the
functions of several set variables (n-set functions), gave the notions of partial derivative
and of derivaive of a n-set function and establishes some optimality conditions for
mathematical programs involving n-set functions.

The research topic direction introduced by Corley was developed by Zamai
[12,13], Lin[4,5], Preda[10,11], .M. Stancu-Minasian [11], Mititdu, Preda[7,8] etc.

Let I'" be the n-fold product of a o -algebra I of subsets of a given set X and
the vector functions f=(f;,.,f,):I">RP,  g=(gs,...9,): " >R*P,
h=(hy,...hg)—> R% and k=(ky,....k,)': :T" > R™ (' isthetransposition sign). In
this paper is presented a framework where the effic ency conditions of Kuhn-Tucker type



are equality rdations. Thisideais illustrated with the following multiobjective program
generated by n-set functions:

o Minimize (,(S) ..., f,(S))
( subjectto h(S)<0,k(S)=0,Ser™

We consider the following multiobjective fractional program with mixed cons-
traints:

Minimize {fl(s) fp(S)]

9:1(S) " g,(9)

subject to h(S)<0,k(S)=0,SeI'".
For the program (PFE) is developed a duality through weak, direct and converse

dudity theorems, where the main constraints of the dual program are equality relations.
Generdized (p,b) -vexity hypotheses for the functions of the program are used. These

results are extended also for a multiobjective fractional program with inequality and
equality (mixed) constraints involving n-set functions of the same type. We denote by
Dppe thedomain of (PFE).

We remind that for the vectors u=(uy,...,u,)’ and v=(vy,..,v,)" therdations
u=v, u<v,usgv,u<v dc, aredefined as

(PFE)

u=sve U =vi,i=Ln; usveuy Sv,i=1n;
u<ve U <vi,i=ln;usveousvandu=v.
n
We write u'v for the inner product » uv; of u and v, where * is the

i=1
transposition sign.

2. DEFINITIONSAND PRELIMINARIES

Let (X,I',u) be a finite positive aomless measure space with L;(X,T, 1)
separable. Consider the pseudometric space (I'",d) , where I'" is the n-fold product of
the o -dgebra I' and d isthe pseudometricon T'" defined by

k=1
Here S=(S,,...,S,), T =(T;,...,T,) and A denotes the symmetric difference.

The set QeI can be identified with its indicator function
lg el (X, u)c Li(X,I',u) and then the o -algebra I is identified with the subset

. 12
d(S,T) Z{Z (,U(SkATk):| :



{IQ| QeT} cL (X,Iu). For pe (X, I'u)and QeI theintegra Igwdy will be
denoted by (@, ).
Definition 2.1 [9]. A set function ¢ :I' - R is said to be differentiable at T € Q if there
exists Do(T) e Ly (X, T, i), called the derivative of ¢ at T, such that

(8 =p(T)+(Do(T), Is —11)+w(ST)
foral SeT’, where w :T'xI' > Ris O(d(S,T)) , that is,

limgsm-ow(ST)/d(ST)=0.

Definition 2.2 [2]. A n-sat function F:I'" - R admits a partial derivative at
SP=  (SY,..,S°) with respect to variable S,(I<k<n) if the function

2(S) = F(S,s S 1,50 Sp.qre-r Sn) admits the derivative De(S?) , and we define

D F(S°) = = D(SY). Thederivativeof Fat S° is DF(S%) = (D;F(SP)...., D,(S?)).
Definition 2.3 [2]. For a vector set function f =(fy,..., fp)':l"n —RP, the partial
derivative with respect to the variable Sy a s° is
D f(S°) = (Dy fy(S°),.... D F,(SO)).
Definition 2.4 [2] A n-set function F:I'" >R is differentiable at S° if there exists
DF(S%) and y :T" xT'" — R such that
n
F(S)=F(SO)+kZ_l<DkF<S°), ls, 1) +¥(S,S°),
where (S, S°) is O(d(S, S°)).
Definition 2.5[11]. Let F:I'" — R differentiableat S°,b:T"xT" >R, and p eR.
1) Fissaid to be (p,b)-vex [strictly (p,b) -vex] at S°if for all SeT'"[ S S°] we have
n

(s, S%)(F(S) - F(s°))z[>]k2_l<DkF<s°), g, 1)+ P(S, S)d2(S,S%)
2) F is said to be pseudo (p,b)-vex [strictly pseudo (p,b)-vex] at S° if for all
Ser" [S#S°] wehave

n

D (DkF(S%), 1, —1g) 2 pd?(S,8%) = b(S,S°)F(S) 2 [>(S, S°)F(S°).

k=1
3) Fisquas (p,b)-vex [strictly quasi (p,b)-vex] a S if for al Ser"[S=S°] we
have:

F(S) S F(S") = b(S,S)Y (DyF(S), g 1) [~ pb(S, S)0(5,5°).
k=1



4) [7] F is said to be monotonic quasi (p,b)-vexat S° if for dl SeI'™ we have

F(S)=F(S%) =b(S, so)znkaF(sO), ls, —1g)=—ph(S, s%d?(s,s0Y).
k=1
Let us denote by D the domain of (PE) and let P ={1,..., p}, Q={1...,g} and

M ={1,...,m} .
Definition 2.6 [3] A point S° €D is an efficient solution (Pareto minimum) for (PE) if
thereexistsno Se D, S# S°, suchthat f(S) < f(S°).

For a multiobjective program with inequality constraints involving n-set functions
Corley[2] defined the nation of the regular feasible solution and established necessary
conditions for the efficiency of this solution. Mititelu and Preda adapted these two
notions for the multiobjective program (PE) with mixed constraints as follows.

Definition 2.7 [8] A point S° € D isaregular feasible solution for (PE) if h and k are
differentiableat S° and there exists T e I'" such that for all jeQ and se M we have

h, (s°)+zn:<thj (S°). 1+, ~lg)<0,
Ry, 7
D (Dks(8%), Iy, — 1) £0.
s=1
Lemma 2.1 (Mititelu, Preda[8] ). Let S°bearegular efficient solution of (PE) and let f,

h and k be differentiable at S°. Then there exist u® € RP,v® eR% and w® e R™ such
that

' Dy (S°) + V' Dyh(S%) + WO'k(SO), 15 | )20 (2.1)
v§ el Ikk<n
u®>0,u%e=1e=(1..,)eR”

v2>0,v% g(S) =0, w° h(S) =0.

In n-se programing these relations are considered efficiency conditions of
Kuhn-Tucker type for the multiobjective program (PE) involving n-set functions.

3. KUHN-TUCKER EFFICIENCY CONDITIONS AS EQUALITY
RELATIONS
In this section we establish efficiency conditions of Kuhn-Tucker type as equality

relations for the program (PE) at apoint S° e D, using the regularity condition (R). The
idearesults from Theorem 2.2 by [6].

Theorem 3.1 (Necessary conditions KT for (PE)[11]). Let S° (29, = X) be aregular
efficient (or weakly efficient) solution of the type (R). We aso suppose that the functions



f, hand k are differentiable at S°. Then there exist vectors u® eRP, v2 eRY and

w? e R™ such that the following efficiency conditions of Kuhn-Tucker type for (PE) at
SPare satisfied :

u®'D, f(S°) + v D h(S®) + WP D k(S%) =0, k=1,n
(KTE){v°'h(s®)=0, v°>0
u® >0, gu’ =1.
Proof. It is sufficient to analyse carefully the reation (2.1). We denote
Cr =u" Dy f(5%) + v D h(S®) + W' D k(S?)

and then, therelation (2.1), for each k, succesively becomes
Cy, g, — 's;’)éO' vSy e,

(Cuils)2(Cy Tg), VST,
J‘SKdeygj‘sngdy,VSk el

Cru(Si) 2 Cyu(S) , VS €T,
Clu(Sy) - 1(S)120, VS, eT. (3.1)

Particularly, for S, =@ we have u(S,)=0 and from relation (3.1) it results
C <0, k=1n. For S, =X and having S{ c X, therefore u(S?) < u(X), then

from (3.1) it results C, 20,k=1Ln. Finaly we obtain C, =0,k=1,n and so, the
relation (2.1) is equiva ent with the first relation of (KTE).

Zalmai established for the next multiobjective fractional program with inequality
consraints:

f (S
Minimize f1(S) p(S
9:(9 9,(9
subjectto h(S)<0,SeT™"
((PFE) whitout the constraint k(S) =0)) the following necessary efficiency conditions:

Lemma 3.1 (Zalmai[13, 2002]). Assume that f;,g;,iePand h; € Q are differentiable

(PF)

a S® er'"and for each i e P thereexist S' e I'" such that

n
hi (%) + D (Dyh;(S°, Ig, - lg) <0
k=1
and for each | € P\{i},

kz;(gi(SO)Dk f,(S%) - ;(S°)Dyg (S°), ls — 152 <0.



If SO isan efficient solution of (PF), then thereexist u’ eR P and v® eR % such

that

n p q

kZ<Zui°[gi(SO>Dkfi(80)— fi(S°)Dkg; (S7)]+ D VjDh(S"), I ~14)20,  (32)
=1 i=1 =1

vSel"

vh (89 =0, u®20, eu’=1 V" 20.
Proposition 3.2 If SO(:: @,# X) isan efficient solution of (PF) then
p q
¢ = Y ul[g; (S°)Dy f(S%) - f;(S°)Dy g; (S°)] + D v{Dyh; (%) =0.
i=1 j=1

Proof. Relation (3.2) becomes

n

Z<Ck"sK—'ss>ZO’ VS, el (3.3)
k=1

Particularly, for S =S°,..,S 1 =S :S1 =S, S, =S° rdation (3.3)
becames

(C, s, —Isg)go,vsk el
whichimplies ¢, =0. But theindex k is arbitrarily choosen, Then ¢, =0,V k :ﬁ .
Remark Reation (3.2) and ¢, =0, k=1n are equivalent.

Consequently, according to Definition 2.7, Lemma 2.1, Proposition 3.2 and
Remark, Definition 2.7 and Lemma 3.1, adapted for the program (PFE), have the
following forms

Definition 2.8 A point S° e Dpre is a regular feasible solution in Zalmai’s sense for
(PFE) if f;,0;,ieP, hj, j€Q and kg, se M are differentiable at S%er™ and for
eachieP there exist S' e '™ such tha

hj(s°)+zn:<thj(s°), lg 1) <0,VjeQ,
k=1

n
kz_l<th<S°), lg ~1g)<0,VleM
and for each | € P\{i},

kz;(gi(SO)Dk f,(S%) - f;(S°) D, g, (S°), ls — 1) <0.

Definition 2.9 A point sle Dpee IS said to be a nonsingular solution for (PFE) if
SY=@and = X.



Theorem 3.3 (Necessary efficiency conditions for (PFE)). Assume that f,,g;,ieP,
hj, jeQ and kg, seM are differentiable  at S°eDpee . If S° isa nonsingular,
regular efficient solution for (PFE) in Zalmai’s sense, then there exist u® eR P, V0 e R
and w® e R™ such that

iu?[gi (S°)Dy ;(S%) - f;(S°)Dy g; (S°)]+
i=1

q m
(KTFE) +> vDyh; (S%)+ > wDyks(S%) =0
-1 s=1

1<ks<n vih; (%) =0, jeQ

u® >0, gu’ =1 V0 >0.
Therdations (KTFE) represent the efficiency conditions of Kuhn-Tucker type for (PFE)
at s°.

DUALITY BETWEEN (PFE) AND (DFE)
Let {Qy,...Q;} be a partition of Q, that is Q, cQ,Q, N Qs =0 if a =4,

r
UQD, =Qand {M,,..,M,} asimilar partition of M.
a=1
We suppose that the functions f;,g;,ieP,h;, jeQ and kS,SEM are

differentiable on T'".Then we associate to (PFE) the following dual multiobjective
fractiona program of maximum Pareto

.M fp()
oM’ g,

Maximize [
subject to

P q m
(DFE) Zui [9i (T)Dy £ (T) - f; (T)Dy g; (T)] +ZV]‘ Dyh; U)JrZWsDkks =0
i-1 =1 s1

1<sksn, vg hg (T)+wy ky 20,a=1r

Tel", ux>0,eu=1 v=0,

where
Vo, hg, ()= D vihy (), Wiy Ky, (T)= D weks(T).
ieQ, seM,
We denote by #(S) the value of the primal program (PFE), by &(T,u,v,w) the
val ue of the dual program (DFE) and be Dpgg the domain of (DFE). In what follows we



develop a dudity relation between the pair of multiobjective fractional programs (PFE)
and (DFE) with weak, direct and converse duality theorems.
Theorem 4.1 (Weak duality). Let S and (T,u,v,w)be arbitrary feasible solutions of

(PFE) and (DFE). Assume that:

a ForeachieP, f(T)>0, g;(T)>0,g;(S)>0;

b) Foreach i e P, f; ispseudo (p;,b)-vexa T, —g; ispseudo (p{,b) -vexa T ;

c) For each o =1r, Vo hg, isquasi (pg,b)-vexa T,

d) For each o« =1r, Wy Ky ismonotonic quasi (pi,b) -vexa T;

€) One of the functions f;,—g;, Vi e P isstrictly pseudo (p,b)-vex (p=p{, or =p{),
oroneof vg hy ,Va,isstrictlyquasi (p",b)-vexat T;

p r
f) D uilp{gi (M) + o fi(M]+ D (o5 + p3) 2 0.
i=1 a=1
Thentherdation 7(S)<5(T,u,v,w) isfase

Proof. From hypothesis b) it results:

i(Dk fi(Milg ~I1,)2-p{d*(ST)=bS,T)F(S) 2b(S,T)f (T), (4.1)
k=1

D (-Dygi(M).ls —I1)2-pld?(S<T)=-b(ST)g (9 =-bST)g (T),  (42)
k=1
For each :]7 , according to c¢), we obtain

n

Vouhg, (S) Vg, Mg, (1= BST)Y (DyVouhige (T 15, ~ I7,) = pZ(STIA(S,T)
k=1

4.3)

For each o :]? , according to d), it results

n
Wi Ky () =Wyyoky (T)=b(S,T)D (Dywyy ky (T). I —I7. ) =—pib(ST)d*(S,T)
k=1
(4.9).
Taking into account the hypothesis €), for S= T, one of the second implications
by (4.1), (4.2) or (4.3) is strictly: then meansthat b(S,T) > 0. In that follows, we consider

these implications without the factor b(S, T). Then, equivaently, we have

f; (S) < f; (T) :>Zp:<Dk fi(T)lg —17)<-pf d*(ST), (4.5)
i1

~0i(S9) <-g;(T) = Y (-Dygi (M), g —I7 ) <—-p[d*(ST). (4.6)
k=1



Now, we multiply (4.5) by u;g;(T)=0(but u'g(T)>0) and summ by ieP,
multiply (4.6) by u; f;(T) >0 (u'f(T)>0) and summ by i € P and then we summ, side
by side, the two obtained inequalities.|t results

p
D ulfi(9)gi(M)-g;(9fi(M]<0 =

i=1

4.7
n p p

= > O ulg (MDy f(T) - f(MDg (M1, — 11> < =D Ul (T) + p/fi (T)]d*(S,T)
k=1 ia1 i-1

We summ now (4.3) by « =1r and summ also (45) by « =1r and then, we summ
side by side, the two obtained inequalities. One obtain

5[ g (9w K (9)) (g hg, M)+ by, M0 = a8
a=1
= 370 g, 1)+ W kg, M1 ~ 1505 Doz + 9 B2(ST)

k=1l a=1 a=1

Now we summ, side by side implications (4.7) and (4.8) and obtain:

ZU [fi(S)ai (M) - fi (Mg (S)]+ZV [h; (S)-h; (T)]+ZW[|<(S) k(T]<0 = (4.8)

i=1 s=1

n b
:>Z<Zui[gi(T)Dk (S - £, (T)Dyg; U)]"‘ZVj Dyh; (I-)+ZWSDkkS! ls, — 7)<
=1 s=1

k=1 i=1

A utn M+ a1 Y0+ o ]dz(s,n.

i=1 a=1

Taking now into account the first constraint of the dual (DFE) and the hypothesis
f), the second inequality by (4.9) becomes 0< 0, that is afase Then, it results that the
fi rst inequality of (4.9) isfalsetoo and consequently, we have

ZU [fi(Sai(M) - fi(T)g; (S)]+ZV [h;(S) —h;(M)] +ZW [ks(S) —ks(T)]20, Vu=0

i=1

(4.10)
But taking into account therdations Se Dpge and (T,u,V, W) € Dpee We obtain:

Zplui[fi (9)9i(M-gi(9F(TM)]20,vu=0,eu=1
i=1
and having f;(T) g; (S) >0, Vie P, wehave

fi(§ _ fi(M
.Z 19 ( )g(T)(gl(S) g(T)J>0 vuz0€eu=1 (4.11)



But u;g;(S)g;(T)=0 (sometimes >0), Vi e P. Then, from (4.11), it results

f(S) £ (S 1,(T)

01(9 (M g9 gy
that is theinequality z(S) <6(T,u,v,w) isfdse

Corodllary 4.1 (Weak dudity). Let S and (T, u,v,w)be arbitrary feasible solutions of

(PFE) and (DFE), respectivey. Assume satisfied the conditions &), b) of the Theorem 4.1
and the followings:

¢') Foreach a =11, T, =Vg hg + Wy ky isquasi (py,b)-vexa T;

] NO<THAN (0,...,0),

d’) one of the functions f;,—g;, Vie P isstrictly pseudo (p,b) -vex (p=p{,p) & T,
oroneof I',,Va,isstrictly quas (pg,b)-vexat T;

p r
) D ulpigi(M)+pff M1+ ps 20,
i=1 a=1

Thentherdation 7z(S) < 5(T,u,v,w) isnat true.

Theorem 4.2 (Direct duality). Let S° be a nonsingular regular efficient solution of
(PFE) in Zalmai’s sense and suppose satisfied the hypotheses of Theorem4.1. Then there

are vectors u® eRP, V2 eRY and w® eR™ such that (S°,u®,v%,w°) is an efficient
solution for the dual (DFE) and 7(S°) = §(S%,u®,v°,wP).
Proof. Because S° is aregular eficient solution of (PFE), according to Theorem 3.3

there are vectors U’ eRP, v eRY and w® eR™ such that the following reations are
satisfied:

B o 0 0 0 Oy . N0 N

Zui [9i(S)Dy f(S™) - f;(S")Dyai (S )]+ZVJ Dh; (S )+ZWSDkks =0,

i=1 j=1 s=1

1<k<n, vfh;(S%) =0, VjeQ,
u°20,e'u°:1 vO>0.
Also w2k (S°)=0,vseM. Then from these relations it results that

(8°%,u® v® W) e Dpee and in addition,

0 0
2(S%) :( f1(SY) ) fi (S )J:5(So,u0,v0,wo).

0:1(8%  9u(s)
Because Theorem 4.2 contains the hypotheses of Theorem 4.1, the reation
7(8%) < <5(S%ul VO w0 s false It follows that (S°,u,°v®,wP®) is an efficient
solution for (DFE).



Corollary 4.2 (Direct duality). Let S° be a nonsingular regular efficient solution of
(PFE) and suppose satisfied the hypotheses of Corollary 4.1. Then there are vectors

WeRP V2 eRY and w® eR™ such that (S°,u®,v%,wP) is an efficient solution for
the dual program (DPE) and 7(S°) = §(S°%,u®,v%,wP) .

Theorem 4.3 (Converse dudity). Let (S°,u®,v®, w®) be an efficient solution of the dual
program (DFE) and suppose that:
i) S isanonsingular regular efficient solution of the primal program (PFE).

a%) ForeachieP, f(s%)>0, g,(s%)>0

bO) Foreach i e P, f, ispseudo(p/,b)-vex at S°and —g; ispseudo (p/,b) -vex at S°.
co) Foreach @ =1r , Vo, ho, isquasi (py,b)-vex a so:

do) Foreach a =1r, Wy Ky ismonotonic quasi (2 b)-vex a S°.

eo) One of the functions f;,—g;, Vi € P is strictly pseudo (p,b)-vex (p =p/,p/) a
S% or oneof v, hg Ve, isstrictly quasi (p,b)-vexat S°;

p r
%) > ulloiio(s0) + £ (SI+ Yot + £2) 20
i-1 a=l

Then S=5% and 7(S°) =6(S°,u®,vO,wo).

Proof. Suppose, by absurdum, that S = S° and we shall find a contradiction. Because S
isa nonsingular regular efficient solution of (PFE) then, according to Theorem 3.3, there

arevectors UeRP,veRY and WeR™ such that the next conditions of KTFE type
are satisfied:

m

Zp:Ui[gi (S)Di f(S) - f{(S)Dy g (§)]+Zq:\7j Dyh; (S) + Y WsDyks(S) =0

i-1 =1 s=1

1<ks<n, U0, €U=1 V20 V,'h;(S)=0, j€Q.

Also we have Wkg(S)=0,Vse M.Then(S,U,V,W) € Dpge. The conditions
a%)--f% are particularly hypotheses of Theorem 4.1. Moreover, Se Dpee
and(SO,uo,vo,wo) € Dpge . Following the proof of Theorem 4.1 we obtain that the
rdation 7(S) <&(S%u°v°,w) is fase Moreover, z(S)=5(S,U,V,W). Therefore
the rdation &(S,u,v,w) < 5(S%u,v%,wP) is fdse Then the maximal efficiency of
(S%,u®,v°,w®) s contradicts. Therefore the supposition S = S°, above made, is false.
It follows S = S° and 7(S°%) =45(S%u’v0).



Corollary 4.3 (Converse dudlity). Let (S°,u®,v®,w®) bean efficient solution of the dual
program (DFE) and suppose sati sfied the next conditions:
i) S isanonsingular regular efficient solution of the primal program (PFE);
a%), b%) and f°) of Theorem 4.3,
c’)Foreach o =1r, [, =Vq 'hg +Wy 'ky isquasi (p;,b)-vexat s?:
d’) one of the functions f;,—g;, Vi € P are strictly pseudo (p,b)-vex (p = p{,p{) a
s° or I, Va isstrictly quasi (p!,b)-vex at S;
Then S=8° andz(S°) = 5(S°,u®,v%,w0).

BIBLIOGRAPHY

[1] C. R. Bector, S. K. Sungia and C. S. Latitha (1993) “Generalized B-vex functions
and generalized B-vex programming”, JOTA, 76, 561-576;

[2] H.W. Corley (1987), “Optimization theory for n-set functions”, J. Math. Anal. Appl.
127, 1,193-205;

[3] M. A. Geoffrion (1968), “Proper efficiency and the theory of vector minimization ”, J.
Math. Anal. Appl. 149, 618-630;

[4] L. J Lin (1990), “Optimality and differentiable vector-valued n-set functions”, J.
Math. Anal. Appl. 149, 255-270;

[5] L.J. Lin (1991), “On the optimality conditions of vector-valued n-set functions”, J.
Math. Anal. Appl. 367-387;

[6] S. Mititdu (2002), “Kuhn-Tucker conditions and Preda duality for multiobjective
mathematical programs”, U.P.B. Sci Bull. Series A, 64, 4, 3-16;

[7] S. Mititdu and V. Preda (2003), “Duality for multiobjective mathematical programs
with n-set functions”, Rev. Roumaine Math. Pures Appl. 48, 2, 5-6, 491-512;

[8] S. Mititdu and V. Preda (2003), “Generalized Mond-Weir duality for multiobjective
mathematical programs with n-set functions”, Math. Reports, 5(55), 2, 141-158;

[9] R. J. T. Morris (1979), “Optimal constrained selection of a measurable subset”, J.
Math. Ana. Appl. 70, 546-562;

[10] V. Preda (1995), “On duality of multiobjective fractional measurable subset selection
problems”, J. Math. Anal. Appl. 196, 514-525;

[11] V. Predaand I. M. Stancu-Minasian (1999), “Mond-Weir duality for multiobjective
mathematical programming of n-set functions”, Rev. Roumaine Math. Pures Appl. 44,
629-644;

[12] G. J. Zama (1991), “Optimality conditions and duality for multiobjective
measurabl e subset sdlection problems”, Optimization, 22, 221-238;

[13] G. J. Zamai (2002), “Efficiency conditions and duality models for multiobjective
fractional subset programming problems with generaized (F,a,p,0)-V-convex

functions”, Computers Math. Applic. 43, 1489-1520.



