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Abstract  
In mathematical programming of the n-set functionsis is considered a 
framework where the Kuhn-Tucker conditions are equality relations. For 
a multiobjective fractional program involving generalized ( ,b)-vex n-set 
functions there is defined  a multiobjective fractional pro-gram  with 
equality constrains and weak, direct and converse duality theorems are 
established.  
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1. INTRODUCTION 

In 1979 Morris [9] developed the first optimization theory of the set functions. He 
defined the convexity and differentiability notions for the set functions and established 
optimal conditions and Lagrange duality for nonlinear programming problems with set 
functions.. The Corley�s paper [2] is very important because he initiated the study of the 
functions of several set variables (n-set functions), gave the notions of partial derivative 
and of  derivative of a n-set function and establishes some optimality conditions for 
mathematical programs involving n-set functions. 

The research topic direction introduced by Corley was developed by Zalmai 
[12,13], Lin [4,5], Preda [10,11], I.M. Stancu-Minasian [11], Mititelu, Preda[7,8] etc.  

Let n  be  the n-fold product of a  -algebra   of subsets of a given set X  and 

the vector functions  n
pfff :)',..,( 1 R p ,  n

pggg :)',...,( 1 R* p , 

 )',...,( 1 qhhh  R q  and )',...,( 1 mkkk  : n: R m  '(  is the transposition sign).  In 

this paper is presented a framework where the efficiency conditions of Kuhn-Tucker type
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 are equality relations. This idea is illustrated with the following multiobjective program 
generated by n-set functions: 
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We consider the following multiobjective fractional program with mixed cons-

traints: 

(PFE)
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For the program (PFE) is developed a duality through weak, direct and converse 
duality theorems, where the main constraints of the dual program are equality relations. 
Generalized ),( b -vexity hypotheses for the functions of the program are used. These 
results are extended also for a multiobjective fractional program with inequality and 
equality (mixed) constraints involving n-set functions of the same type. We denote by  

PFED  the domain of  (PFE). 

We remind that for the vectors ),...,( 1  nuuu   and ),...,( 1  nvvv  the relations 

,vu   ,vu  ,vu  vu   etc, are defined as 

nivuvu ii ,1,  ; nivuvu ii ,1,  ; 

nivuvu ii ,1,  ; .and vuvuvu   

We write vu   for the inner product 


n

i
ii vu

1

of  u and v, where � is the 

transposition  sign. 
 
2. DEFINITIONS AND PRELIMINARIES 

 
Let ),,( X  be a  finite positive atomless measure space with ),,(1 XL  

separable. Consider the pseudometric space ),( dn , where n  is the n-fold product of 

the  -algebra   and d is the pseudometric on n  defined by 
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Here ),...,(),,...,( 11 nn TTTSSS   and   denotes the symmetric difference. 
The set   can be identified with its indicator function         

  ),,( XLI  ),,(1 XL  and then the  -algebra   is identified with the subset 



 

 

}{ I  ).,,(   XL  For  ),,(1   XL and   the integral  d  will be 

denoted by  .,  I  
Definition 2.1 [9]. A set function : R is said to be differentiable at T  if there 

exists ),,()( 1   XLTD , called the derivative of    at T, such that  

),(),()()( TSIITDTS TS    
for all ,S  where : R is )),(( TSdO , that is, 

0),(/),(lim 0),(  TSdTSTSd  . 

Definition 2.2 [2]. A n-set function  nF : R admits a partial derivative at            

0S  ),...,( 00
1 nSS  with respect to variable )1( nkSk   if the function                  
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Definition 2.3 [2]. For a vector set function  n
pfff :),...,( 1 R ,p  the partial 

derivative with respect to the variable kS  at 0S  is                                                  
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Definition 2.4 [2] A n-set function  nF : R is differentiable at 0S  if there exists 

)( 0SDF  and  nn: R such that  
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where ),( 0SS  is )).,(( oSSdO  

Definition 2.5 [11]. Let  nF : R differentiable at  nnbS :,0 R  and  R.  

1) F is said to be ),( b -vex [strictly ),( b -vex] at 0S if for all nS  [ ]0SS   we have 
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2) F is said to be pseudo ),( b -vex [strictly pseudo ),( b -vex] at 0S  if for all 
nS  ][ 0SS    we have: 
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3) F is quasi ),( b -vex [strictly quasi ),( b -vex ] at 0S  if for all ][ 0SSS n   we 
have:  
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4) [7] F is said to be monotonic quasi ),( b -vex at 0S  if for all nS   we have 
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Let us denote by D  the domain of (PE) and let },...,1{ pP  , },...,1{ qQ  and 

},...,1{ mM  .  

Definition 2.6 [3] A point DS 0  is an efficient solution (Pareto minimum) for (PE) if 

there exists no 0, SSDS  , such that ).()( 0SfSf   
For a multiobjective program with inequality constraints involving n-set functions 

Corley[2] defined the notion of the regular  feasible solution and established necessary 
conditions for the efficiency of this solution. Mititelu and Preda adapted these two 
notions for  the multiobjective program (PE) with mixed constraints as follows. 

Definition 2.7 [8] A  point 0S D  is a regular feasible solution for (PE) if h and k are 

differentiable at 0S  and there exists T n  such that for all Qj  and Ms  we have 

(R)

























.0),(

,0),()(

0

0

0

1

1

00

kk

kk

STs

m

s
k

n

k
STjkj

IISkD

IIShDSh

  

Lemma 2.1 (Mititelu, Preda [8] ). Let 0S be a regular efficient solution of  (PE) and let f, 

h and k be differentiable at .0S Then there exist 0u  R 0, vp R q  and 0w R m  such 
that  

0),(')(')(' 0
000000 

kk SSkk IISkwShDvSfDu                                              (2.1) 

nkSk  1,  

 )1...,,1(,1',0 00 eeuu R p  

0)(,0)(',0 000 


 ShwSgvv . 
 

In  n-set programing  these relations  are considered efficiency conditions of  
Kuhn-Tucker type for  the multiobjective program  (PE) involving  n-set functions.   
 
3. KUHN-TUCKER EFFICIENCY CONDITIONS AS EQUALITY 
RELATIONS 

In this section we establish efficiency conditions of Kuhn-Tucker type as equality 

relations for the program (PE) at a point ,0 DS   using the regularity condition (R). The 
idea results from Theorem 2.2 by [6]. 

Theorem 3.1 (Necessary conditions KT for (PE)[11]). Let (0S Ø, )X  be a regular 

efficient (or weakly efficient) solution of the type (R). We also suppose that the functions 



 

 

hf , and k are differentiable at .0S Then there exist vectors 0u R ,p 0v R q   and 

0w R m  such that the following efficiency conditions of Kuhn-Tucker type  for (PE) at 
0S are satisfied : 
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Proof. It is sufficient to analyse carefully the relation (2.1). We denote  

)(')(')(' 000000 SkDwShDvSfDuC kkkk   
and then, the relation (2.1), for each  k, succesively becomes 
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.,0)]()([ 0  kkkk SSSC                                                                                   (3.1) 
 

Particularly, for kS Ø we have 0)( kS  and from relation (3.1) it results 

,0kC nk ,1 .  For XSk   and having  ,0 XS k   therefore ),()( 0 XS k    then  

from (3.1) it results nkCk ,1,0  . Finally we obtain nkCk ,1,0   and so, the 
relation (2.1) is equivalent with the first relation of  (KTE). 

Zalmai established for the next multiobjective fractional program with inequality 
consraints: 
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((PFE) whitout the constraint )0)( Sk ) the following necessary efficiency conditions:  

Lemma 3.1 (Zalmai[13, 2002]). Assume that Pigf ii ,, and Qh j   are differentiable 

at nS 0 and  for each Pi  there exist niS  such that  
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If 0S  is an efficient solution of  (PF), then there exist 0u R p  and 0v R q  such 
that 
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Proposition 3.2 If (0S Ø, )X  is an efficient solution of (PF) then  
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Proof. Relation (3.2)  becomes  
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Particularly, for 00
11

0
11

0
11 ...,,;...,, nnkkkk SSSSSSSS    relation (3.3) 

becames 
 kSSk SIIc

kk
,0, 0 , 

which implies 0kc . But the index k is arbitrarily choosen, Then  nkck ,1,0  . 

Remark Relation (3.2) and nkck ,1,0    are equivalent. 
Consequently, according to Definition 2.7, Lemma 2.1, Proposition 3.2 and 

Remark, Definition 2.7 and Lemma 3.1, adapted for the program (PFE), have the 
following forms   

Definition 2.8 A point PFEDS 0  is a regular feasible solution in Zalmai�s sense for 

(PFE) if Pigf ii ,, , Qjh j ,  and Msk s , are differentiable at 0S n  and  for 

each Pi    there  exist niS   such that  

QjIIShDSh
kk SS

n

k
jkj 



,0),()( 0

1

00 , 

MlIISkD
kk SS

n

k
lk 



,0),( 0
0

1

 

and for each },{\ iPl  
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Definition 2.9 A point PFEDS 0   is said to be a nonsingular solution for (PFE) if 

0S Ø and .X  
 



 

 

Theorem 3.3 (Necessary efficiency conditions for (PFE)). Assume that Pigf ii ,, , 

Qjh j ,  and Msk s , are differentiable   at 0S PFED  . If 0S  is a  nonsingular, 

regular efficient  solution for (PFE) in Zalmai�s sense, then there exist 0u R 0, vp R q  

and 0w R m  such that  
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The relations (KTFE) represent the efficiency conditions of Kuhn-Tucker type for (PFE) 

at .0S  
 
DUALITY BETWEEN (PFE) AND (DFE) 

Let },...,{ 1 rQQ be a partition of Q , that is   QQQQ , Ø if   , 
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 Q and },...,{ 1 rMM  a similar partition of M.  

We suppose that the functions QjhPigf jii  ,,,,  and sk , Ms  are 

differentiable on .n Then we associate to (PFE) the following dual multiobjective 
fractional program of  maximum Pareto 
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We denote by )(S  the value of the primal program (PFE), by ),,,( wvuT  the 

value of the dual program (DFE) and be DFED the domain of (DFE). In what follows we 



 

 

develop a duality relation between the pair of multiobjective fractional programs (PFE) 
and (DFE) with weak, direct and converse duality theorems. 
Theorem 4.1 (Weak duality). Let S and ),,,( wvuT be arbitrary feasible solutions of 
(PFE) and (DFE). Assume that: 
a) For each ;0)(,0)(,0)(,  SgTgTfPi iii  

b) For each Pi , if  is pseudo ),( bi  -vex at T, ig  is pseudo ),( bi  -vex at T ; 

c)  For each r,1 , 
 QQ hv  is quasi ),( b  -vex at T; 

d) For each r,1 , 
 MM kw is monotonic quasi ),( 4 b -vex at T; 

e) One of the functions Pigf ii  ,,  is strictly pseudo ),( b -vex ,( i   or )i  , 

or one of  

 ,QQ hv , is strictly quasi ),( b  -vex at T; 
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Then the relation ),,,()( wvuTS    is false. 
Proof. From hypothesis b) it results: 
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For each r,1 , according to c), we obtain 
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(4.3) 

For  each r,1 , according to d), it results 
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(4.4). 

Taking into account the hypothesis e), for ,TS   one of the second implications 
by (4.1), (4.2) or (4.3) is strictly: then means that 0),( TSb . In that follows, we consider 

these implications without the factor ).,( TSb  Then, equivalently, we have 
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Now, we multiply (4.5) by 0)( Tgu ii (but )0)(  Tgu  and summ by Pi , 

multiply (4.6) by 0)( Tfu ii )0)((  Tfu  and summ by Pi  and then we summ, side 
by side, the two obtained inequalities.It results 
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We  summ  now (4.3) by r,1  and summ also (4.5) by r,1  and then, we summ  
side by side, the two obtained inequalities. One obtain 
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Now we  summ, side by side, implications  (4.7) and (4.8)    and obtain: 
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.  
Taking now into account the first constraint of the dual (DFE) and the hypothesis 

f), the second inequality by (4.9) becomes 00  , that is a false. Then, it results that the 
first inequality of (4.9) is false too and consequently, we have  
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But taking into account the relations PFEDS  and DFEDwvuT ),,,(  we obtain: 
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that is  the inequality ),,,()( wvuTS    is false. 
Corollary 4.1 (Weak duality). Let S and ),,,( wvuT be arbitrary feasible solutions of 
(PFE) and (DFE), respectively. Assume satisfied the conditions a), b) of the Theorem 4.1 
and the followings: 

c�)  For each r,1 , 
 MMQQ kwhv   is quasi ),( b  -vex at T; 

d�)  one of the functions Pigf ii  ,,  is strictly pseudo ),( b -vex ),( ii    at T, 

or one of    , , is strictly quasi ),( b  -vex at T; 
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Then the relation ),,,()( wvuTS    is not true. 

Theorem 4.2 (Direct duality).  Let 0S  be a nonsingular regular efficient solution of 
(PFE) in Zalmai�s sense and suppose satisfied the hypotheses of Theorem 4.1.  Then there 

are vectors 0u R p , 0v R q  and 0w R m  such that ),,,( 0000 wvuS  is an efficient 

solution for the dual (DFE) and  ).,,,()( 00000 wvuSS    

Proof. Because 0S  is a regular efficient solution of (PFE), according to Theorem 3.3  

there are vectors 0u R p , 0v R q   and  0w R m  such that the following relations are 
satisfied: 

.0,1',0

,,0)(,1

,0)()]()()()([

000

00

1

00

1

00000

1

0











vueu

QjShvnk

kDwShDvSgDSfSfDSgu

jj

m

s
sksjk

q

j
jikiiki

p

i
i

 

Also .,0)( 00 MsSkw ss   Then from these relations it results that 
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Because Theorem 4.2 contains the hypotheses of Theorem 4.1, the relation 

)( 0S  ),,,( 0000 wvuS  is false. It follows that ),,,( 0000 wvuS  is an efficient 
solution for (DFE).  
 



 

 

Corollary 4.2 (Direct duality). Let 0S  be a nonsingular regular efficient solution of 
(PFE) and suppose satisfied the hypotheses of Corollary 4.1. Then there are vectors 

0u R 0, vp R q  and 0w R
m

 such that ),,,( 0000 wvuS  is an efficient solution for 

the dual program (DPE) and ),,,()( 00000 wvuSS   . 

Theorem 4.3 (Converse duality). Let ),,,( 0000 wvuS be an efficient solution of the dual 
program (DFE) and suppose that: 
i) S  is a nonsingular regular efficient solution of  the primal program (PFE). 

a )0
  For each ,0)(, 0  SfPi i 0)( 0 Sg i  

b )0
For each ,Pi if  is pseudo ),( bi  -vex at 0S and ig  is pseudo ),( bi  -vex at 0S . 

c )0
  For each r,1 ,  

 QQ hv is quasi ),( b  -vex at 0S ; 

d )0
 For each r,1 , 

 MM kw  is monotonic  quasi ),( 4 b -vex at .0S  
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 One of the functions Pigf ii  ,,  is strictly pseudo ),( b -vex ),( ii    at 
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Then 0SS   and  ),,,()( 00000 wvuSS   . 

Proof. Suppose, by absurdum, that 0SS   and we shall find a contradiction. Because S  
is a  nonsingular regular efficient solution of (PFE) then, according to Theorem 3.3, there 

are vectors u R vp , R q  and  w R m  such that the next conditions of  KTFE type 
are satisfied: 
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Also we have .,0)( MsSkw ss  Then DFEDwvuS ),,,( . The conditions 

a )0 --f )0  are particularly hypotheses of Theorem 4.1. Moreover, PFEDS   

and DFEDwvuS ),,,( 0000 . Following the proof of Theorem 4.1 we obtain that the 

relation ),,,()( 0000 wvuSS    is false. Moreover, ),,,()( wvuSS   . Therefore 

the relation ),,,(),,,( 0000 wvuSwvuS    is false. Then the maximal efficiency of 

),,,( 0000 wvuS   is contradicts. Therefore the supposition ,0SS   above made, is false. 

It follows 0SS   and )( 0S  ),,( 000 vuS . 
 



 

 

Corollary 4.3 (Converse duality). Let ),,,( 0000 wvuS  be an efficient solution of the dual 
program (DFE) and suppose satisfied the next conditions: 
i) S  is a nonsingular regular efficient solution of the primal program (PFE); 

 a )0 , b )0  and  f )0  of Theorem 4.3; 

c�)For each ,,1 r  
 MMQQ kwhv ''  is quasi ),( b  -vex at 0S ; 

d�)  one of the functions  Pigf ii  ,,  are strictly pseudo ( b, )-vex ),( ii    at 
0S   or   ,  is strictly quasi ( b,  )-vex at S; 

Then  0SS   and ),,,()( 00000 wvuSS   . 
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